# How to get CERN into the TOP500 list

#### CERN openlab II monthly review 27 February 2007

Andreas Hirstius





# Background



- CERN recently purchased a large number of 3GHz Woodcrests
- Each box has a theoretical max. performance of 48 GFlops
  - 4 cores á 12 GFlops (3GHz \* 4FP ops per cycle)
  - $\sim$  30000 GFlops theor. max with all delivered machines
- To enter the next TOP500 list we would need ~3500-4000 GFlops
  - a relatively small efficiency should be sufficient to enter the list
- So our motivation was: We could, so why not try it  $\, {\ensuremath{\mathfrak{C}}} \,$
- BUT:
  - Parallel applications are not very common at CERN
  - ... pretty much no experience with MPI (software used for parallelization)

## The benchmark



- The standard benchmark used is HPL High Performance Linpack
  - the software solves a linear system of order  $n: \mathcal{A}_x = \mathcal{B}$
  - $\bullet$  a matrix size N is chosen according to the available memory
  - the available cores are arranged into a *P*-by-*Q* grid of processes
    - *P* and *Q* largely control the load balance  $\cong$  performance
  - the actual work is distributed in NB-by-NB sized blocks
    - the choice of NB has also significant influence on performance
  - 14 more parameters that can be used for fine tuning
    - those parameters are far less important
  - Values / Examples come later...



## What does a cluster usually looks like

- Large/Huge multiprocessor machines with proprietary interconnect
  - Blue Gene (#1 in the list has 131072 processors!!!)
  - Cray
  - Altix
- Large number of small multiprocessor machines with fast interconnect
  - InfiniBand, Quadrics, Myrinet (latency  $\mathcal{C}(\mu s)$ )
- Ethernet based clusters have usually a specialised network setups
  - using switches with very low latency ... overall  $C(10 \ \mu s)$
  - 43% of the systems, but only 22% of total performance

The most important thing for a cluster:

The interconnect has a very low latency in the order of a few  $\mu$ s (Ethernet based cluster have larger latency ... and lower efficiency)

Our setup has latencies up to 600  $\mu$ s !! That's an eternity for a parallel job...





# The setup - hardware

#### The Machines:

- about 530 machines available
  - three different vendors
  - 3GHz Woodcrest
  - 8GB RAM
  - 1Gb NICs

#### The Network setup:

- Edge: HP ProCurve 3500yl (3400cl for machines from one vendor)
  - delay per switch: 5  $\mu$ s
- Core: Force10 E1200
  - delay per router: 50  $\mu$ s !!

### The setup – software



- The machines were installed with the std. CERN setup
  - SLC4 for x86\_64
  - all daemons running, incl. monitoring
    - considered "very bad" for HPL performance
  - Job submission was using LSF
    - special queue was installed
    - usually a single user can not submit so many jobs
  - NO special tuning at all !
- Intel MPI
- Intel MKL (Math Kernel Library)
- High Performance Linpack (HPL)

#### How it started...



Initial tests were started with ~260 machines

- get the setup up and running
  - MPI and HPL
  - setup LSF
- get familiar with the software and the parameters
- test scalability up to 256 machines (1024 cores)
  - we were unsure about the scalability in our environment
    - ... remember our latencies are about a factor 100 larger than in a "normal" cluster
- The results were very promising, so more machines were made available

| number of cores          | 4    | 8    | 16   | 64    | 256  | 1024 |
|--------------------------|------|------|------|-------|------|------|
| GFlops                   | 35.9 | 67.2 | 119  | 435.2 | 1735 | 6227 |
| rel. increase in #cores  | 1    | 2    | 2    | 4     | 4    | 4    |
| rel. increase in Gflops  | 1    | 1.87 | 1.77 | 3.66  | 3.99 | 3.59 |
| scaling factor           | 1    | 0.94 | 0.89 | 0.91  | 1.00 | 0.90 |
| efficiency (theor/meas.) | 0.75 | 0.7  | 0.62 | 0.57  | 0.56 | 0.51 |



#### ... and continued ...

- ~530 machines (2120 cores) were available
- for about four days no successful run with more than 256 machines (1024 cores)
- MPI crashed when it tried to establish all necessary communication channels
- Intensive debugging at CERN and by Intel
- The problem could be traced to the batch of machines delivered by one of the vendors
  - the machines which are connected to the HP ProCurve 3400cl switches
    - we think that the driver for the NIC could be the problem
    - ... or the switches ...
    - ... or both.

### ... and went on.



• only about 340 machines remained available

- but even now the runs were very unstable and slow
- it turned out that communication was again the problem
  - LSF assignes the machines "randomly"
  - since we are limited by our connectivity this is dangerous
  - machines had to be carefully ordered ...



- The traffic via the 10Gbit uplink to the router is the limiting factor
- "unordered" nodes for a run with 1024 cores run at ~8Gbit/s
- An "ordered" list of 320 nodes (1280 cores) run at only ~6.1Gbit/s



# The impact of communication

#### The inital computations do not require so much communication...

Column=002704 Fraction=0.005 Mflops=9448558.39 Column=005304 Fraction=0.010 Mflops=9860783.61 Column=008008 Fraction=0.015 Mflops=10003344.26 Column=010608 Fraction=0.020 Mflops=9985213.33 Column=013312 Fraction=0.025 Mflops=10056021.72

... but the communications at the end of the run have a significant impact on overall performance

Column=315432 Fraction=0.595 Mflops=8677419.04 Column=368368 Fraction=0.695 Mflops=8582679.81 Column=421408 Fraction=0.795 Mflops=8486964.16 Column=474448 Fraction=0.895 Mflops=8399663.57 Column=527384 Fraction=0.995 Mflops=8335859.30



## Tuning the parameters – the Voodoo

#### Initial tuning was done with 1024 cores ...

| The parameters                   | GFlops |  |  |
|----------------------------------|--------|--|--|
| N: 445000; NB: 104; P: 32; Q: 32 | 4471   |  |  |
| N: 445000; NB: 104; P: 16; Q: 64 | 5934   |  |  |
| N: 445000; NB: 104; P: 8; Q: 128 | 5142   |  |  |
| N: 445000; NB: 96; P: 16; Q: 64  | 4840   |  |  |
| N: 455000; NB: 128; P: 16; Q: 64 | 6164   |  |  |
| N: 460000; NB: 128; P: 16; Q: 64 | 6227   |  |  |

#### ... but with 1360 cores everything was different

| The parameters                   | GFlops |  |  |
|----------------------------------|--------|--|--|
| N: 530000; NB: 128; P: 16; Q: 85 | 8209   |  |  |
| N: 530000; NB: 104; P: 20; Q: 68 | 8198   |  |  |
| N: 530000; NB: 104; P: 16; Q: 85 | 8329   |  |  |
| N: 540000; NB: 104; P: 16; Q: 85 | 7940   |  |  |
| N: 530000; NB: 104; P: 20; Q: 68 | 8042   |  |  |



• 340 machines

→ 1360 cores



- 6.12 GFlops per core
- 51% efficiency !

40 Gbit/s

~70 usable

10 Gbit/s

50 μs

50 µs

5 μs

openlab

5 μs

5 μs

5 μs

5 μs

~150 usable

10 Gbit/s

-----

~120 usable

50 µs

40 Gbit/s







openlab

#### ... compared to the entire lxbatch farm



Bytes/s

OETIKE

**CERN** openlab presentation – 2007

## Summary of results



| number of cores          | 4    | 8    | 16   | 64    | 256  | 1024  | 1280  | 1360  |
|--------------------------|------|------|------|-------|------|-------|-------|-------|
| GFlops                   | 35.9 | 67.2 | 119  | 435.2 | 1735 | 6227  | 7747  | 8329  |
| rel. increase in #cores  | 1    | 2    | 2    | 4     | 4    | 4     | 1.25  | 1.06  |
| rel. increase in GF      | 1    | 1.87 | 1.77 | 3.66  | 3.99 | 3.59  | 1.24  | 1.08  |
| scaling                  | 1    | 0.94 | 0.89 | 0.91  | 1.00 | 0.90  | 1.00  | 1.01  |
| theoretical max.         | 48   | 96   | 192  | 768   | 3072 | 12288 | 15360 | 16320 |
| efficiency (theor./real) | 0.75 | 0.70 | 0.62 | 0.57  | 0.56 | 0.51  | 0.50  | 0.51  |



Only the run with 1360 cores is optimised! (at least as much as possible in the available timeframe)



CERN IT achieved a remarkable performance with High Performance Linpack and Intel MPI

# **8329 GFlops with 1360 cores** (6.12 GFlops per core $\Rightarrow$ 51% efficiency)

- setup not optimised (h/w or s/w wise)
- for our type of (network) setup extremely good result
  - other GigE based clusters: 19 67 % efficiency
- would be rank #79 in current list
- being submitted to the TOP500 committee (as soon as the submission webpage is online again)
- HPL is extremely sensitive to it's parameters ...

## Acknowledgements



- Intel:
  - Sergey Shalnov
  - Intel MPI people
- CERN
  - Ulrich Schwickerath
    - LSF and general help (debugging, etc.)
  - Veronique Lefebure
    - installation of machines
  - Nick Garfield (and others in CS group)
    - looking into the network setup